Models:
A4LC 10 B/BR
A4LC 15 B/BR
A4LC 20 B/BR
A4LC 25 B/BR
A4LC 30 C/CR
A4LC 40 C/CR
A4LC 50 C/CR

R407C Air-Cooled Split Systems
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. INTRODUCTION TO REFRIGERANT R407C</td>
<td>1</td>
</tr>
<tr>
<td>2. SPECIFICATIONS</td>
<td>2</td>
</tr>
<tr>
<td>3. OUTLINES AND DIMENSIONS</td>
<td>3 - 4</td>
</tr>
<tr>
<td>4. WIRING DIAGRAMS</td>
<td>5 - 8</td>
</tr>
<tr>
<td>5. SPECIAL PRECAUTIONS</td>
<td>9 – 10</td>
</tr>
<tr>
<td>6. INSTALLATION</td>
<td>11 – 15</td>
</tr>
<tr>
<td>7. SERVICING AND MAINTENANCE</td>
<td>16 – 17</td>
</tr>
<tr>
<td>8. TROUBLESHOOTING</td>
<td>18 - 23</td>
</tr>
<tr>
<td>9. PARTS LIST</td>
<td>24 – 27</td>
</tr>
</tbody>
</table>
ENVIRONMENTAL FRIENDLY

The Montreal Protocol regulation calls for the phase-out of HCFCs by the year 2030 to prevent the ozone layer from further depletion. R407C is an environment friendly refrigerant to replace R22. The operating characteristics of R407C system bears close similarity to that of R22. R407C thermophysical properties such as pressure-temperature behavior, and heat-transfer characteristic are somewhat similar to the properties of R22.

<table>
<thead>
<tr>
<th>Physical Property</th>
<th>R407C</th>
<th>R22</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molecular Wt (g/mol)</td>
<td>86.2</td>
<td>86.5</td>
</tr>
<tr>
<td>Vapor Density (kg/m³)</td>
<td>42.0</td>
<td>44.2</td>
</tr>
<tr>
<td>Liquid Density (kg/m³)</td>
<td>1134</td>
<td>1195</td>
</tr>
<tr>
<td>Boiling Point (°C)</td>
<td>-37.1 to -44.3</td>
<td>-40.8</td>
</tr>
<tr>
<td>Latent Heat Vap (kJ/kg)</td>
<td>245</td>
<td>234</td>
</tr>
<tr>
<td>Ozone Depletion Potential</td>
<td>0.00</td>
<td>0.05</td>
</tr>
<tr>
<td>Global Warming Potential</td>
<td>1600</td>
<td>1700</td>
</tr>
</tbody>
</table>

R407C CHARACTERISTICS

R407C is a ternary mixture of R32, R125, and R134a with weight composition of 23%, 25% and 52% respectively. These three components have different vapor pressure and boiling points. R407C liquid and vapor components have different compositions when the fluid evaporates or condenses. This gives rise to a temperature glide where the bubble point and dew point are of different temperatures. The effect of glide in heat exchangers is that as the refrigerant mixture flows through the tubing at constant pressure, the evaporating temperature will change as the composition of the liquid and vapor phases change. Typically, the glide for R407C is about 5°C to 10°C. The extend of temperature glide actually varies with the pressure and composition of components present in the mixture during the leak.

The main concerns for R407C is its zeotropic nature. When leak occurs and only vapor leaks out, the composition of the refrigerant mixture left in the system will change. Especially, when the system is idle, R32 being the lightest component will leak out more than the other components. What remains in the system will be of different composition. If the leaked system is subsequently top-up with R407C, the mixture in the system will varies from the original composition percentage ratio. This composition shift will slightly affect the system performance. However, study has shown that after a series of repeated leaks and top-ups, the system capacity drops up to 6%.

Another concern for R407C system is the lubricant used for its compressor. Like all HFC refrigerants, R407C uses polyol ester oil (POE) as its lubricant. This hydroscopic oil is prone to moisture contamination. Extra precaution must be taken not to expose the R407C system too long to moist air; as the oil will soak up the moisture into the system.

P-H DIAGRAM
ZEOTROPIC MIXTURES
2. SPECIFICATIONS

HEAT PUMP

<table>
<thead>
<tr>
<th>MODEL</th>
<th>OUTDOOR UNIT</th>
<th>A4LC10B</th>
<th>A4LC15B</th>
<th>A4LC20B</th>
<th>A4LC25B</th>
<th>A4LC30C</th>
<th>A4LC40C</th>
<th>A4LC50C</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOMINAL</td>
<td>kcal/h</td>
<td>2,268</td>
<td>2,772</td>
<td>4,538</td>
<td>5,750</td>
<td>7,110</td>
<td>9,830</td>
<td>12,760</td>
</tr>
<tr>
<td>COOLING</td>
<td>W</td>
<td>2,937</td>
<td>3,303</td>
<td>5,433</td>
<td>6,195</td>
<td>7,992</td>
<td>11,324</td>
<td>14,650</td>
</tr>
<tr>
<td>CAPACITY</td>
<td>Btu/h</td>
<td>9,000</td>
<td>11,200</td>
<td>18,300</td>
<td>21,000</td>
<td>30,000</td>
<td>38,000</td>
<td>50,000</td>
</tr>
</tbody>
</table>

REFRIGERANT / CONTROL

<table>
<thead>
<tr>
<th>TYPE</th>
<th>CAPILLARY TUBE (OUTDOOR)</th>
<th>CAPILLARY TUBE (INDOOR)</th>
<th>TXV</th>
</tr>
</thead>
</table>

POWER SOURCE

| V/Ph/Hz | 240 / 1 / 50 |

COMPRESSOR TYPE

| ROTARY HERMETIC |

CAPACITOR

| pH | 30 |

RATED RUNNING CURRENT

| A | 4.00 |

RATED INPUT POWER

| W | 500 |

PROTECTION DEVICE

| OVERLOAD PROTECTION |

BLADE MATERIAL

| GLASS REINFORCED ACRYLIC STYRENE RESIN |

FAN TYPE

| PROPELLER / DIRECT |

FAN PULLER

| 0.32 / 3.50 |

FIN PER INCH

| 19 |

FACE AREA

| m²/ft² | 0.92 / 3.09 |

DIAMETER

| mm/in | 335 / 13.2 |

THICKNESS

| mm/in | 0.01 / 0.001 |

FIN HEIGHT

| mm | 31.0 |

COIL

| 0.87 / 9.33 |

TUBE

| 0.32 / 3.50 |

MATERIAL

| GLASS REINFORCED BILLET STEEL |

OVERALL DIMENSION

| mm | 646 / 25.4 |

WEIGHT

| kg | 0.76 |

COOLING ONLY

<table>
<thead>
<tr>
<th>MODEL</th>
<th>OUTDOOR UNIT</th>
<th>A4LC10B</th>
<th>A4LC15B</th>
<th>A4LC20B</th>
<th>A4LC25B</th>
<th>A4LC30C</th>
<th>A4LC40C</th>
<th>A4LC50C</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOMINAL</td>
<td>kcal/h</td>
<td>2,268</td>
<td>2,772</td>
<td>4,538</td>
<td>5,750</td>
<td>7,110</td>
<td>9,830</td>
<td>12,760</td>
</tr>
<tr>
<td>COOLING</td>
<td>W</td>
<td>2,937</td>
<td>3,303</td>
<td>5,433</td>
<td>6,195</td>
<td>7,992</td>
<td>11,324</td>
<td>14,650</td>
</tr>
<tr>
<td>CAPACITY</td>
<td>Btu/h</td>
<td>9,000</td>
<td>11,200</td>
<td>18,300</td>
<td>21,000</td>
<td>30,000</td>
<td>38,000</td>
<td>50,000</td>
</tr>
</tbody>
</table>

REFRIGERANT / CONTROL

<table>
<thead>
<tr>
<th>CAPILLARY TUBE (OUTDOOR)</th>
<th>CAPILLARY TUBE (INDOOR)</th>
<th>TXV</th>
</tr>
</thead>
</table>

POWER SOURCE

| V/Ph/Hz | 240 / 1 / 50 |

COMPRESSOR TYPE

| ROTARY HERMETIC |

CAPACITOR

| pH | 30 |

RATED RUNNING CURRENT

| A | 4.00 |

RATED INPUT POWER

| W | 500 |

PROTECTION DEVICE

| OVERLOAD PROTECTION |

BLADE MATERIAL

| GLASS REINFORCED ACRYLIC STYRENE RESIN |

FAN TYPE

| PROPELLER / DIRECT |

FAN PULLER

| 0.32 / 3.50 |

FIN PER INCH

| 19 |

FACE AREA

| m²/ft² | 0.92 / 3.09 |

DIAMETER

| mm/in | 335 / 13.2 |

THICKNESS

| mm/in | 0.01 / 0.001 |

FIN HEIGHT

| mm | 31.0 |

COIL

| 0.87 / 9.33 |

TUBE

| 0.32 / 3.50 |

MATERIAL

| GLASS REINFORCED BILLET STEEL |

OVERALL DIMENSION

| mm | 646 / 25.4 |

WEIGHT

| kg | 0.76 |

HEATING - 21.1°C DB / 15.6°C WB INDOOR AND 8.3°C DB / 6.1°C WB OUTDOOR.

1) ALL SPECIFICATIONS ARE SUBJECT TO CHANGE BY THE MANUFACTURER WITHOUT PRIOR NOTICE.

2) ALL UNITS ARE BEING TESTED AND COMPLY TO ARI 210-240-89.

3) NOMINAL COOLING AND HEATING CAPACITY ARE BASED ON THE CONDITIONS BELOW:

 a) COOLING – 26.7°C DB / 19.4°C WB INDOOR AND 35°C DB OUTDOOR.

 b) HEATING – 21.1°C DB / 15.6°C WB INDOOR AND 8.3°C DB / 6.1°C WB OUTDOOR.
3. OUTLINES AND DIMENSIONS

MODEL: A4LC 10B / 15B, 10BR / 15BR

MODEL: A4LC 20B / 25B, 20BR / 25BR

All dimensions in mm
MODEL: A4LC 30/40/50C, A4LC 30/40/50CR

All dimensions in mm

⚠️ Caution

Sharp edges and coil surfaces may cause injury. Wear protective gloves when handling the unit.
4. WIRING DIAGRAMS

MODEL : A4LC 10/15B

OUTDOOR UNIT WIRING DIAGRAM

KEY:
CM - COMPRESSOR MOTOR
FM - FAN MOTOR
OLP - OVERLOAD PROTECTOR
--- - FIELD SUPPLY WIRING

MODEL : A4LC 10/15BR

KEY:
FM - FAN MOTOR
CM - COMPRESSOR MOTOR
4V - 4 WAY VALVE
HP - HIGH PRESSURE CONTROL
(FOR FAN MOTOR ONLY)
TH2- OUTDOOR THERMOSTOR
--- - FIELD SUPPLY WIRING
MODEL : A4LC 20/25B

OUTDOOR UNIT WIRING DIAGRAM

KEY:
CM - COMPRESSOR MOTOR WITH INTERNAL OVERLOAD PROTECTOR
FM - FAN MOTOR
---- - FIELD SUPPLY WIRING

MODEL : A4LC 20/25BR

KEY:
FM - FAN MOTOR
CM - COMPRESSOR MOTOR
4V - 4 WAY VALVE
TH2 - OUTDOOR THERMISTOR
---- - FIELD SUPPLY WIRING
1) What is new refrigerant R407C?
R407C is a zeotropic refrigerant mixture which has zero ozone depletion potential and thus conformed to the Montreal Protocol regulation. It requires Polyol ester oil (POE) oil for its compressor's lubricant. Its refrigerant capacity and performance are about the same as the refrigerant R22.

2) Components
Mixture weight composition R32(23%), R125(25%), R134a(52%)

3) Characteristic
• R407C liquid and vapor components have different compositions when the fluid evaporates or condenses. Hence, when leak occurs and only vapor leaks out, the composition of the refrigerant mixture left in the system will change and subsequently affect the system performance. If just additional refrigerant is added to leaked system, system performance will drop. It is recommended that the system should be evacuated thoroughly before recharging with R407C.
• When refrigerant R407C is used, the composition will differ depending on whether it is in gaseous or liquid phase. Hence when charging R407C, ensure that only liquid is being withdrawn from the cylinder or can. This is to make certain that only original composition of R407C is being charged into the system.
• POE oil is used as lubricant for R407C compressor, which is different from the mineral oil used for R22 compressor. Extra precaution must be taken not to expose the R407C system too long to moist air.

4) Check list before installation/servicing
• Tubing
 Refrigerant R407C is more easily affected by dust of moisture compared with R22, make sure to temporarily cover the ends of the tubing prior to installation
• Compressor oil
 No additional charge of compressor oil is permitted.
• Refrigerant
 No other refrigerant other that R407C
• Tools
 Tools specifically for R407C only (must not be used for R22 or other refrigerant)
 i) Manifold gauge and charging hose
 ii) Gas leak detector
 iii) Refrigerant cylinder/charging cylinder
 iv) Vacuum pump c/w adapter
 v) Flare tools
 vi) Refrigerant recovery machine

5) Handling and installation guidelines
Like R22 system, the handling and installation of R407C system are closely similar. All precautionary measures; such as ensuring no moisture, no dirt or chips in the system, clean brazing using nitrogen, and thorough leak check and vacuuming are equally important requirements. However, due to zeotropic nature of R407C and its hydroscopic POE oil, additional precautions must be taken to ensure optimum and trouble-free system operation.

a) Filter-dryer must be installed along the liquid line for all R407C air conditioners. This is to minimise the contamination of moisture and dirt in the refrigerant system. Filter-dryer must be of molecular sieve type. For a heat-pump system, install a two-way flow filter dryer along the liquid line.

b) During installation or servicing, avoid prolong exposure of the internal part of the refrigerant system to moist air. Residual POE oil in the piping and components can absorb moisture from the air.
c) Ensure that the compressor is not expose to open air for more than the recommended time specified by its manufacturer (typically less than 10 minutes). Removed the seal-plugs only when the compressor is about to be brazed.

d) The system should be thoroughly vacuumed to 1.0 Pa (-700mmHg) or lower. This vacuuming level is more stringent than R22 system so as to ensure no incompressible gas and moisture in the system.

e) When charging R407C, ensure that only liquid is being withdrawn from the cylinder or can. This is to ensure that only the original composition of R407C is being delivered into the system. The liquid composition can be different from the vapor composition.

![Composition of R407C in vapor phase is different from liquid phase.](image)

f) Normally, the R407C cylinder or can is being equipped with a dip-pipe for liquid withdrawal. However, if the dip-pipe is not available, invert the cylinder or can so as to withdraw liquid from the valve at the bottom.

![Dip-pipe](image) ![Invert cylinder without dip-pipe](image) ![Liquid withdrawal](image)

g) When servicing leak, the top-up method, commonly practiced for R22 system, is not recommended for R407C system. Unlike R22 where the refrigerant is of a single component, the composition of R407C, which made-up of three different components, may have changed during the leak. Consequently, a top-up may not ensure that the R407C in the system is of original composition. This composition shift may adversely affect the system performance. It is recommended that the system should be evacuated thoroughly before recharging with R407C.
6. INSTALLATION

![Caution]

Sharp edges and coil surface are potential injury hazard. Avoid from contact with them.

(1) INSTALLATION OF INDOOR UNIT
For installation of indoor unit, please refer to the indoor unit technical manual.

(2) INSTALLATION OF OUTDOOR UNIT
As condensing temperature rises, evaporating temperature rises and cooling capacity drops. In order to achieve maximum cooling capacity, the location selected for outdoor unit should fulfill the following requirements:

- Install the condensing (outdoor) unit in a way such that hot air distributed by the outdoor condensing unit cannot be drawn in again (as in the case of short circuit of hot discharge air). Allow sufficient space for maintenance around the unit.

- Ensure that there is no obstruction of air flow into or out of the unit. Remove obstacles that block air intake or discharge.

- The location must be well ventilated, so that the unit can draw in and distribute plenty of air thus lowering the condensing temperature.
- A place capable of bearing the weight of the outdoor unit and isolating noise and vibration.
- A place protected from direct sunlight. Otherwise use an awning for protection, if necessary.

- The location must not be susceptible to dust or oil mist.
INSTALLATION CLEARANCE

- Outdoor units must be installed such that there is no short circuit of the hot discharge air or obstruction to smooth air flow. Select the coolest possible place where intake air should not be hotter than the outside temperature (max. 45°C)

<table>
<thead>
<tr>
<th>Minimum Distance</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Series I</td>
<td>150 mm</td>
<td>1,000 mm</td>
<td>150 mm</td>
<td>500 mm</td>
</tr>
<tr>
<td>Series II</td>
<td>300 mm</td>
<td>1,000 mm</td>
<td>300 mm</td>
<td>500 mm</td>
</tr>
</tbody>
</table>

(3) REFRIGERANT PIPING

Caution

Must install a molecular-sieve type filter dryer along the liquid line.

MAXIMUM PIPE LENGTH AND MAXIMUM NUMBER OF BENDS

- When the pipe length becomes too long, both the capacity and reliability drop. As the number of bends increases, system piping resistance to the refrigerant flow increases. This will lower the cooling capacity and as a result, the compressor may become defective. Always choose the shortest path and follow the recommendation as tabulated below:

<table>
<thead>
<tr>
<th>MODELS</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
<th>40</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. Length (m)</td>
<td>7</td>
<td>10</td>
<td>15</td>
<td>15</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Max. Elevation (m)</td>
<td>5</td>
<td>5</td>
<td>8</td>
<td>8</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Max. No of Bends</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

PIPING SIZES (FLARE CONNECTION TYPE)

- Piping sizes are as follows:

<table>
<thead>
<tr>
<th>MODELS</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
<th>40</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquid (mm/in)</td>
<td>6.35 (1/4)</td>
<td>6.35 (1/4)</td>
<td>6.35 (1/4)</td>
<td>9.52 (3/8)</td>
<td>9.52 (3/8)</td>
<td>9.52 (3/8)</td>
<td>9.52 (3/8)</td>
</tr>
<tr>
<td>Suction (mm/in)</td>
<td>9.52 (3/8)</td>
<td>12.70 (1/2)</td>
<td>15.88 (5/8)</td>
<td>15.88 (5/8)</td>
<td>15.88 (5/8)</td>
<td>19.05 (3/4)</td>
<td>19.05 (3/4)</td>
</tr>
</tbody>
</table>

PIPING CONNECTION TO THE UNITS

- Align the centre of the piping and sufficiently tighten the flare nut with fingers.
- Finally, tighten the flare nut with torque wrench until the wrench clicks.
- When tightening the flare nut with torque wrench, ensure the direction for tightening follows the arrow on the wrench.

<table>
<thead>
<tr>
<th>PIPE SIZE (mm/in)</th>
<th>TORQUE (Nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.35 (1/4)</td>
<td>18</td>
</tr>
<tr>
<td>9.52 (3/8)</td>
<td>42</td>
</tr>
<tr>
<td>12.70 (1/2)</td>
<td>55</td>
</tr>
<tr>
<td>15.88 (5/8)</td>
<td>65</td>
</tr>
<tr>
<td>19.05 (3/4)</td>
<td>78</td>
</tr>
</tbody>
</table>
(4) WIRING

ELECTRICAL CONNECTIONS
- Wiring regulations on wire diameters differ from country to country. Please refer to your LOCAL ELECTRICAL CODES for field wiring rules. Be sure that installation comply with such rules and regulations.

GENERAL PRECAUTIONS
- Ensure that the rated voltage of the unit corresponds to the name plate before carrying out proper wiring according to the wiring diagram.
- Provide a power outlet to be used exclusively for each unit. A power supply disconnect and a circuit breaker for over-current protection should be provided in the exclusive line.
- The unit must be GROUNDED to prevent possible hazards due to insulation failures.
- All wiring must be firmly connected.
- All wiring must not touch the hot refrigerant piping, compressor or any moving parts of fan motors.

(5) VACUUMING AND CHARGING
- The pre-charged outdoor unit does not need any vacuuming or charging. However once it is connected, the connecting pipe line and the indoor need to be vacuumed before releasing R407C from the outdoor unit.
 1) Open the service port core cap.
 2) Connect pressure gauge to the service port.
 3) Connect the line to vacuum pump. Open the charging manifold valve and turn the pump on. Vacuum to -0.1 Mpa (-760mmHg) or lower. Evacuation time varies by the capacity of the pump but average time is approximately 1 hour.

Diagram 1

4) After evacuation, unscrew the spindle (Diagram 2B) for the gas to run to indoor unit.

Diagram 2
R407C must be charged as liquid. Usually R407C cylinder is equipped with a dip-pipe for liquid withdrawal. If there is no dip-pipe, the cylinder should be inverted so as to withdraw liquid R407C from the valve.

Do not top-up when servicing leak, as this will reduce the unit performance. Vacuum the unit thoroughly and then charge the unit with fresh R407C according to the amount recommended in the specification.

(6) ADDITIONAL CHARGE

- The refrigerant gas has already been pre-charged into the outdoor unit. For the piping length of 5m and below, additional refrigerant charge after vacuuming is not necessary.
- When the piping length is more than 5m, please use the table below (unit in grams).

<table>
<thead>
<tr>
<th>MODEL</th>
<th>7m</th>
<th>10m</th>
<th>15m</th>
<th>20m</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>40</td>
<td>100</td>
<td>200</td>
<td>-</td>
</tr>
<tr>
<td>15</td>
<td>40</td>
<td>100</td>
<td>200</td>
<td>-</td>
</tr>
<tr>
<td>20</td>
<td>40</td>
<td>100</td>
<td>200</td>
<td>-</td>
</tr>
<tr>
<td>25</td>
<td>80</td>
<td>200</td>
<td>400</td>
<td>-</td>
</tr>
<tr>
<td>30</td>
<td>90</td>
<td>225</td>
<td>450</td>
<td>675</td>
</tr>
<tr>
<td>40</td>
<td>90</td>
<td>225</td>
<td>450</td>
<td>675</td>
</tr>
<tr>
<td>50</td>
<td>90</td>
<td>225</td>
<td>450</td>
<td>675</td>
</tr>
</tbody>
</table>
(7) OVERALL CHECKING

- Ensure the following, in particular:
 1) The unit is mounted solidly and rigid in position.
 2) Piping and connections are leak proof after charging.
 3) Proper wiring has been done.

- Drainage check - pour some water into drain pan.

- Test run
 1) Conduct a test run after water drainage test and gas leakage test.
 2) Watch out for the following:
 a) Is the electric plug firmly inserted into the socket?
 b) Is there any abnormal sound from unit?
 c) Is there any abnormal vibrations with regard to unit itself or piping?
 d) Is there smooth drainage of water?

- Check that:
 1) Condenser fan is running, with warm air blowing off the condensing unit.
 2) Evaporator blower is running and discharge cool air.
 3) Suction (low side) pressure as recommended.
 4) The remote controller incorporate a 3 minute delay in the circuit. Thus, it requires about 3 minutes before the condensing unit can start up.

(8) STANDARD OPERATING CONDITION

COOLING ONLY UNIT

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Ts °C</th>
<th>Th °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum indoor temperature</td>
<td>19.4</td>
<td>13.9</td>
</tr>
<tr>
<td>Maximum indoor temperature</td>
<td>26.7</td>
<td>19.4</td>
</tr>
<tr>
<td>Minimum outdoor temperature</td>
<td>19.4</td>
<td>13.9</td>
</tr>
<tr>
<td>Maximum outdoor temperature</td>
<td>46.0</td>
<td>24.0</td>
</tr>
</tbody>
</table>

HEAT PUMP UNIT

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Ts °C</th>
<th>Th °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum indoor temperature</td>
<td>10.0</td>
<td>-</td>
</tr>
<tr>
<td>Maximum indoor temperature</td>
<td>26.7</td>
<td>-</td>
</tr>
<tr>
<td>Minimum outdoor temperature</td>
<td>-8.0</td>
<td>-9.0</td>
</tr>
<tr>
<td>Maximum outdoor temperature</td>
<td>24.0</td>
<td>18.0</td>
</tr>
</tbody>
</table>

Ts : Dry bulb temperature
Th : Wet bulb temperature
7. Servicing and Maintenance

The unit is designed to give a long life operation with minimum maintenance required. However, it should be regularly checked and the following items should be given due attention.

<table>
<thead>
<tr>
<th>Components</th>
<th>Maintenance Procedure</th>
<th>Recommended Schedule</th>
</tr>
</thead>
</table>
| **Air Filters** (Indoor unit) | 1. Clean with a vacuum cleaner, or by tapping lightly on any hard surface and then washing in lukewarm water (below 40°C) With neutral soap.
2. Rinse well to dry before re-installing.
3. Note: Never use petrol, thinner, benzene or any other chemicals. | Every 2 weeks.
More frequently if required. |
| **Indoor Unit** | 1. Clean away dirt or dust on grille or panel by wiping with a soft cloth soaked in lukewarm (or cold) water or neutral detergent solution.
2. Note: Never use petrol, thinner, benzene or any other volatile chemicals, which may cause plastic surface to deform. | Every 2 weeks.
More frequently if required. |
| **Condensate Drain Pan & Pipe** | 1. Check and clean. | Every 3 months. |
| **Indoor Fan** | 2. Check for unusual noise. | As necessary. |
| **Indoor/Outdoor Coil** | 1. Check and remove dirt which are clogged between fins. | Every month. |
| | 2. Check and remove obstacles which hinder air flow in and out of indoor/outdoor unit. | Every month. |
| **Electrical** | 1. Check voltage, current and wiring. | Every 2 months. |
| | 2. Check faulty contacts caused by loose connections, foreign matters, etc. | Every 2 months. |
| **Compressor** | 1. No maintenance needed if refrigerant circuit remains sealed. However, check for refrigerant leak at joints & fittings. | Every 6 months. |
| **Compressor Lubrication** | 1. Oil is factory charged. Not necessary to add oil if circuit remains sealed. | No maintenance required. |
| **Fan Motors Lubrication** | 1. All motors pre-lubricated and sealed at factory. | No maintenance required. |
PRE-START UP MAINTENANCE (AFTER EXTENDED SHUTDOWN)
- Inspect thoroughly and clean indoor and outdoor units.
- Clean or replace air filters.
- Clean condensate drain line.
- Clean clogged indoor and outdoor coils.
- Check fan imbalance before operation.
- Tighten all wiring connections and panels.
- Check for refrigerant leakage

The design of the outdoor series allows servicing to be carried out readily and easily. The removal of the top side, front and back panel make almost every part accessible.

CAUTION!
Do not charge OXYGEN, ACETYLENE OR OTHER FLAMMABLE and poisonous gases into the unit when performing a leakage test or an airtight test. These gases could cause severe explosion and damage if expose to high temperature and pressure.
It is recommended that only nitrogen or refrigerant be charged when performing the leakage or airtight test.
When any air-conditioner malfunction is noted, immediately switch off the power supply to the unit, and contact the local dealer, if necessary. Some simple troubleshooting tips are given below:

<table>
<thead>
<tr>
<th>FAULT</th>
<th>CAUSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Fan does not work 3 minutes after starting</td>
<td>• Protection against the frequent starting. Wait 3 or 4 minutes.</td>
</tr>
</tbody>
</table>
| 2. The air conditioning unit does not work | • Power failure or you must be replaced the fuse.
• The power plug is disconnected.
• Possibility of making a programming error in the controller.
• If the fault persist after these verifications, contact your installer. |
| 3. The air conditioning unit does not blow sufficiently | • The air filter is dirty.
• The doors or windows are open.
• The air entrance and exit are clogged.
• The regulate temperature is not high enough. |
| 4. The remote control light is deficient | • The batteries are discharge.
• The batteries are not correctly inserted.
• The assembly is not good. |
| 5. Air discharge flow has a bad odor | • This odor can be caused by cigarette smoke particles, perfume, sweat, which stick to the coil.
• Check if there is any moisture on the walls, garment, other.
• Check the drain pan. |
| 6. Condensation on the air grille of indoor unit | • This is due to air humidity after a long time of operation.
• The unit has a lower temperature point, increase the point and operate at high speed. |
| 7. The water flow of air conditioning unit | • Check the condensate evacuation. |
| 8. The air conditioning unit are noisy | • <<Air flow noise>> : refrigerant fluid admission in evaporator. |
FOR COOLING ONLY MODELS OR HEAT PUMP MODELS (COOLING CYCLE)

DIAGNOSIS BY FLOW CHART

The following chart are efficient checking procedures for troubleshooting when these fan-coil units, are coupled with the condensing units using standard wiring. For dual circuited models, perform the procedures for each circuit.

NO COOLING

![Flowchart Diagram]
INSUFFICIENT COOLING

Compressor Cycling

Cycling On

High Discharge Pressure or Low Suction Pressure

Clogged Condenser Coil

Clean The Condenser

Low Fan Speed

Check The Voltage And Get The Right Voltage

Malfuction Of Fan Cycling System

Check The System And Repair If Required

Circulating Air Flow

Secure Space For Required Air Flow

Discharge Gas or Internal Thermostat

Purge The Refrigerant

Overcharged Refrigerant

Purge The Gas

Non-Condensable Gas

Check The System And Repair The Components If Required

Restricted Liquid Line

Remove The Restriction

High Suction Pressure

See "High Suction Pressure"

HIGH DISCHARGE PRESSURE

Condenser Air Flow

Restricted

High Discharge Pressure

Clogged Condenser Coil

Low Fan Speed

Malfuction Of Fan Cycling System

Circulating Air Flow

Overcharged Refrigerant

Non-Condensable Gas

Restricted Liquid Line

High Suction Pressure

LOW DISCHARGE PRESSURE

Condenser Air Flow

Excessive

Low Discharge Pressure

Malfuction Of Fan Cycling System

Check The System And Repair The Components If Required

Low Refrigerant Charge

Add Refrigerant

Low Ambient Temperature

See The Unit Working Range
HIGH SUCTION PRESSURE

High Suction Pressure

Evaporator

Air Inlet Temperature

Low

Excessive Fresh Air Intake

Insufficient Duct Insulation

Defective Compressor Valve

Overcharged Refrigerant

Reduce The Fresh Air Intake

Reinforce The Duct Insulation

Change Or Repair The Compressor

Purge The Refrigerant

LOW SUCTION PRESSURE

Low Suction Pressure

Evaporator

Air Flow

Restricted

Clogged Air Filter

Restricted Duct

Low Fan Speed

Short Cycling

Faulty Thermostat

Restricted Liquid Line And Suction Line

Low Refrigerant Charge

Low Discharge Pressure

Clean The Air Filter

Remove The Restriction

Adjust The Fan Speed

Remove Obstacles To Air Circulation

Repair Or Replace If Necessary

Remove The Restriction

Add Refrigerant

See “Low Discharge Pressure”

NOISY OPERATION

Noisy Operation

Compressor

Noise

Shipping Bolt(s)

Liquid Refrigerant Backing Up

Evaporator

Fan

Noisy

Liquid Line

Noisy

Strainer Whistling

Unremoved Shipping Bolt(s)

Overcharged Refrigerant

Low Suction Pressure

Low Discharge Pressure

Worn Compressor Parts

Knocking Runner

Worn Bearing

Partially Clogged

Refrigerant Short Charge

Loose Fixed Screws

Inadequate Duct Work

Remove The Bolt(s)

Purge The Refrigerant

See “Low Suction Pressure”

Replace Or Repair The Compressor

Fix The Runner Or Casing Properly

Change The Bearing

Clean The Dryer

Add Refrigerant

Tighten All Fixed Screws

Check Flexible Ducts
For Heat Pump Models

BY MEANS OF PRESSURE READINGS:

<table>
<thead>
<tr>
<th>PRESSURE</th>
<th>PROBABLE CAUSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Circuit</td>
<td>Too Low</td>
</tr>
<tr>
<td>High Side Low Side</td>
<td></td>
</tr>
</tbody>
</table>

BY MEANS OF DIAGNOSIS FLOW CHART

Generally, there are two kinds of problems, i.e., starting failure and insufficient cooling/heating. “Starting Failure” is caused by electrical defect while “Insufficient Cooling/Heating” is caused by improper application or defects in refrigerant circuit.

i) Diagnosis of Electric Circuit

Check power supply
- voltage
- phase
- frequency

Check circuit breaker & fuse

Check settings of remote control box

Check power source cord

Fan fails to start

Fan Motor Capacitor defective

Loose Connections, Contactors

Irregular motor resistance (W) & insulation (M W)

Replace Fan Motor

Regular but fails to start

Compressor locked (to replace compressor)

Thermostat setting too high

Protection Device Actuated

Reset

Voltage supply not within range

Loose Connections, Improper wiring

Compressor Capacitor Defective

Check motor resistance (W) and insulation (M W)

Irregular

Compressor Motor damaged (to replace compressor)
The most common causes of air conditioner failure to “start” are:-

a) Voltage not within ±10% of rated voltage.
b) Power supply interrupted.
c) Control settings improper.
d) Air conditioner is disconnected from main power source.
e) Fuse blown or circuit breaker off.

II) DIAGNOSIS OF REFRIGERANT CIRCUIT / APPLICATION

There might be some cases where the unit starts running but does not perform satisfactory, i.e. insufficient cooling. Judgement could be made by measuring temperature difference of indoor unit’s intake and discharge air as well as running current.

Insufficient Cooling

<table>
<thead>
<tr>
<th>Unit Starts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Check air circulation</td>
</tr>
<tr>
<td>Indoor/Outdoor coil dirty (clogged)</td>
</tr>
<tr>
<td>Air filters dirty</td>
</tr>
<tr>
<td>Fan Malfunction</td>
</tr>
<tr>
<td>Obstruction at air inlet/outlet of indoor/outdoor unit</td>
</tr>
</tbody>
</table>

- High heat load
- Refrigerant circuit
 - Leakage
 - Restriction e.g. at strainer, capillary, filter dryer, etc.
 - Compressor
 - Less or no compression (Low running current)

Satisfactory operation with temperature difference of air intake & discharge of indoor unit 8°C - 13°C

Insufficient Heating

<table>
<thead>
<tr>
<th>Unit Starts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Check air circulation</td>
</tr>
<tr>
<td>Indoor/Outdoor coil dirty (clogged)</td>
</tr>
<tr>
<td>Air filters dirty</td>
</tr>
<tr>
<td>Fan Malfunction</td>
</tr>
<tr>
<td>Obstruction at air inlet/outlet of indoor/outdoor unit</td>
</tr>
</tbody>
</table>

- High heat load
- Refrigerant circuit
 - Leakage
 - Restriction e.g. at strainer, capillary, filter dryer, etc.
 - Compressor
 - Less or no compression (Low running current)

Satisfactory operation with temperature difference of air intake & discharge of indoor unit 14°C - 20°C
9. PARTS LIST

MODEL : A4LC 10/15/20/25B

1. BACK PANEL
2. TOP PANEL
3. CONDENSER COIL ASSY.
4. FAN MOTOR BRACKET
5. FAN MOTOR
6. FLINGER
7. RING WASHER
8. FAN BLADE
9. SQUARE WASHER
10. HEX NUT
11. BLACK LABEL
12. FRONT PANEL
13. OUTER NOZZLE
14. SUCTION PIPE ASSY.
15. DISCHARGE PIPE ASSY.
16. ROTARY COMPRESSOR
17. RUBBER GROMMET
18. COMPRESSOR NUT
19. BASE PAN ASSY.
20. CAPILLARY TUBE ASSY.
21. PARTITION
22. TERMINAL BOX PANEL ASSY.
23. SIDE PANEL
24. ACCESS PANEL
25. FLARE VALVE MOUNTING PLATE
26. SUCTION VALVE (5/8”)
27. LIQUID VALVE
MODEL : A4LC 10/15/20/25BR

1. BACK PANEL
2. TOP PANEL
3. CONDENSER COIL ASSY.
4. FAN MOTOR BRACKET
5. FAN MOTOR
6. FLINGER
7. RING WASHER
8. FAN BLADE
9. SQUARE WASHER
10. HEX NUT
11. BLACK LABEL
12. FRONT PANEL
13. OUTER NOZZLE
14. 4-WAY VALVE ASSY.
15. DISCHARGE PIPE ASSY.
16. ROTARY COMPRESSOR
17. RUBBER GROMMET
18. COMPRESSOR NUT
19. BASE PAN ASSY.
20. CAPILLARY TUBE ASSY.
21. PARTITION
22. TERMINAL BOX PANEL ASSY.
23. SIDE PANEL
24. ACCESS PANEL
25. FLARE VALVE MOUNTING PLATE
26. SUCTION VALVE (5/8”)
27. LIQUID VALVE
28. DEFROST SENSOR AND CLIP
MODEL : A4LC 30/40/50C

<table>
<thead>
<tr>
<th>Number</th>
<th>Component</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ASSY. BASE PAN</td>
</tr>
<tr>
<td>2</td>
<td>SUCTION VALVE</td>
</tr>
<tr>
<td>3</td>
<td>LIQUID VALVE</td>
</tr>
<tr>
<td>4</td>
<td>PARTITION PANEL</td>
</tr>
<tr>
<td>5</td>
<td>CRANKCASE HEATER</td>
</tr>
<tr>
<td>6</td>
<td>COMPRRESSOR ASSY.</td>
</tr>
<tr>
<td>7</td>
<td>SERVICE PANEL</td>
</tr>
<tr>
<td>8</td>
<td>TERMINAL BOARD MAIN ASSY.</td>
</tr>
<tr>
<td>9</td>
<td>ACCUMULATOR</td>
</tr>
<tr>
<td>10</td>
<td>BACK RIGHT PANEL</td>
</tr>
<tr>
<td>11</td>
<td>TOP PANEL</td>
</tr>
<tr>
<td>12</td>
<td>CONDENSER COIL ASSY.</td>
</tr>
<tr>
<td>13</td>
<td>MOTOR BRACKET</td>
</tr>
<tr>
<td>14</td>
<td>SIDE LEFT PANEL</td>
</tr>
<tr>
<td>15</td>
<td>FAN MOTOR ASSY.</td>
</tr>
<tr>
<td>16</td>
<td>FAN BLADE</td>
</tr>
<tr>
<td>17</td>
<td>FRONT PANEL ASSY.</td>
</tr>
</tbody>
</table>
MODEL : A4LC 30/40/50CR

1. ASSY. BASE PAN
2. SUCTION VALVE
3. LIQUID VALVE
4. PARTITION PANEL
5. CRANKCASE HEATER
6. COMPRESSOR ASSY.
7. TXV ASSY.
8. SERVICE PANEL
9. TERMINAL BOARD MAIN ASSY.
10. ACCUMULATOR
11. 4 WAY VALVE ASSY.
12. BACK RIGHT PANEL
13. DEFROST SENSOR AND CLIP
14. TOP PANEL
15. CONDENSER COIL ASSY.
16. MOTOR BRACKET
17. SIDE LEFT PANEL
18. FAN MOTOR ASSY.
19. FAN BLADE
20. FRONT PANEL ASSY.
While upmost care is taken in ensuring that all details in the publication are correct at time of going to press, we are constantly striving for improvement and therefore reserve the rights to alter model specifications and equipment without prior notice. Details of specifications and equipment are also subject to change to suit local conditions and requirements and not all models are available in every market.